Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Quantifying the inheritance of regulatory networks among proteins during asymmetric cell division remains a challenge due to the complexity of these systems and the lack of robust mathematical definitions for inheritance. We propose a novel statistical framework called ODEinherit to measure how much a mother cell’s regulatory network explains its daughter’s trajectories, addressing this gap. Using time-lapse microscopy, we tracked the expression dynamics of six proteins across 85 dividingS. cerevisiaecells, observed over eight hours at 12-minute intervals. Our framework employs a two-step approach. First, we estimate an ordinary differential equation (ODE) system for each cell to characterize protein interactions, introducing novel adjustments for non-oscillatory time series and leveraging multi-cell data. Second, we assess inheritance by clustering cells based on cycling markers and quantifying how well a mother’s regulatory network predicts her daughter’s. Preliminary findings suggest stage-dependent differences in inheritance rates, paving the way for applications in cellular stress response and cell-fate prediction studies across generations.more » « lessFree, publicly-accessible full text available November 24, 2025
-
ABSTRACT Cropland redistribution to marginal land has been reported worldwide; however, the resulting impacts on environmental sustainability have not been investigated sufficiently. Here we investigated the environmental impacts of cropland redistribution in China. As a result of urbanization-induced loss of high-quality croplands in south China (∼8.5 t ha–1), croplands expanded to marginal lands in northeast (∼4.5 t ha–1) and northwest China (∼2.9 t ha–1) during 1990–2015 to pursue food security. However, the reclamation in these low-yield and ecologically vulnerable zones considerably undermined local environmental sustainability, for example increasing wind erosion (+3.47%), irrigation water consumption (+34.42%), fertilizer use (+20.02%) and decreasing natural habitats (−3.11%). Forecasts show that further reclamation in marginal lands per current policies would exacerbate environmental costs by 2050. The future cropland security risk will be remarkably intensified because of the conflict between food production and environmental sustainability. Our research suggests that globally emerging reclamation of marginal lands should be restricted and crop yield boost should be encouraged for both food security and environmental benefits.more » « less
An official website of the United States government
